Magnetic Nanoparticle Delivery System for Mucus Layer Penetration

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multistage nanoparticle delivery system for deep penetration into tumor tissue.

Current Food and Drug Administration-approved cancer nanotherapeutics, which passively accumulate around leaky regions of the tumor vasculature because of an enhanced permeation and retention (EPR) effect, have provided only modest survival benefits. This suboptimal outcome is likely due to physiological barriers that hinder delivery of the nanotherapeutics throughout the tumor. Many of these n...

متن کامل

Multistage Nanoparticle Delivery System for Deep Penetration into Solid Tumor and Electrically Controlled Catalytic Nanowire Growth

Assembly of functional nanocomponents offers promising applications in drug delivery to solid tumors and bottom-up synthesis and integration of nanodevices. This thesis presents a novel multistage nanoparticle delivery system consisting of an assembly of nanoparticles that can change its size to facilitate transport into solid tumors. Current FDA-approved nanotherapeutics, which function based ...

متن کامل

Quantitative sperm mucus penetration: modified formulae for calculating penetration efficiency.

In 1980 Katz et al. derived a formula for the percentage of successful collisions (PSC) as a quantitative measure of sperm-cervical mucus penetration efficiency. The use of PSC waned after its validity was questioned by reports of values >100% and the observation that PSC varied with the cross-sectional area of the mucus column. The aim of the present study was to develop a more accurate measur...

متن کامل

Pretreatment of Human Cervicovaginal Mucus with Pluronic F127 Enhances Nanoparticle Penetration without Compromising Mucus Barrier Properties to Herpes Simplex Virus

Mucosal drug delivery nanotechnologies are limited by the mucus barrier that protects nearly all epithelial surfaces not covered with skin. Most polymeric nanoparticles, including polystyrene nanoparticles (PS), strongly adhere to mucus, thereby limiting penetration and facilitating rapid clearance from the body. Here, we demonstrate that PS rapidly penetrate human cervicovaginal mucus (CVM), i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 2014

ISSN: 0006-3495

DOI: 10.1016/j.bpj.2013.11.3451